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Abstract. The impacts of different emission levels and climate change conditions to landscape-scale
natural vegetation could have large repercussions for ecosystem services and environmental health. We
forecast the risk-reduction benefits to natural landscapes of lowering business-as-usual greenhouse gas
emissions by comparing the extent and spatial patterns of climate exposure to dominant vegetation under
current emissions trajectories (Representative Concentration Pathway, RCP8.5) and envisioned Paris
Accord target emissions (RCP4.5). This comparison allows us to assess the ecosystem value of reaching
targets to keep global temperature warming under 2°C. Using 350,719 km2 of natural lands in California,
USA, and the mapped extents of 30 vegetation types, we identify each type’s current bioclimatic envelope
by the frequency with which it occupies current climate conditions. We then map the trajectory of each
pixel’s climate under the four climate futures to quantify areas expected to fall within, become marginal
to (outside a 95% probability contour), or move beyond their current climate conditions by the end of the
21st century. In California, these four future climates represent temperature increases of 1.9–4.5°C and a
�24.8 to +22.9% change in annual precipitation by 2100. From 158,481 to 196,493 km2 (45–56%) of
California’s natural vegetation is predicted to become highly climatically stressed under current emission
levels (RCP8.5) under the drier and wetter global climate models, respectively. Vegetation in three Califor-
nia ecoregions critical to human welfare, southwestern CA, the Great Valley, and the Sierra Nevada Moun-
tains, becomes >50% impacted, including 68% of the lands around Los Angeles and San Diego. However,
reducing emissions to RCP4.5 levels reduces statewide climate exposure risk by 86,382–99,726 km2. These
projections are conservative baseline estimates because they do not account for amplified drought-related
mortality, fires, and beetle outbreaks that have been observed during the current five-year drought.
However, these results point to the landscape benefits of emission reductions.
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INTRODUCTION

The intensity of projected changes in climate, as
represented by emission levels and changes in
temperature and moisture, is increasingly impor-
tant in strategic landscape planning. The impacts
of future emissions to natural lands also have
implications for ecosystem services, biodiversity
conservation, and potentially ecosystem function
(Hayhoe et al. 2004, Mazziotta et al. 2015). The
degree to which these risks can be successfully
relayed to policy makers can help them to under-
stand the urgency of creating and meeting
reduced emissions via policy.

Lands managed for natural attributes such as
ecosystem services, biodiversity, or dominant
vegetation require strategic selection of climate
adaptation management practices (Rannow et al.
2014). Strategic management decisions relate to
whether to maintain historical species, land-
cover types, ecosystem processes, and resources;
or to embrace and foster changes predicted by
changing climates (Millar and Stephenson 2015).
These decisions carry risk. Managing for current
attributes and enhancing resilience to changing
climate may be wasted effort if climate change
and secondary effects such as increasing wildfire
(Miller and Safford 2012) overwhelm the capac-
ity of systems to be resilient. In contrast, manag-
ing for vegetation change could place species at
risk if future climate projections used to set man-
agement objectives turn out to be inaccurate, and
thereby encourage transition strategies that do
not fit the new climate (Swanston et al. 2016).

Tools that natural resource managers can use to
estimate the effects and severity of climate change
on vegetation include movement-related metrics
such as climate velocity (Loarie et al. 2009, Ack-
erly et al. 2010), dynamic global vegetation mod-
els (DGVMs; Gonzalez et al. 2010), or species
distribution models (SDMs; Elith and Leathwick
2009). Climate velocity measures where current
climate conditions from one location will be
found at other locations in the future; the farther
away conditions move within a set time, the
greater the velocity, while lower velocity may
occur in topographically heterogeneous regions
(Loarie et al. 2009). Climate velocity has been
used recently to identify the lag between the rate
of tree range expansion and the rate-changing
climate conditions (Sittaro et al. 2017). Species

distribution models have been widely used in
climate change studies and are essentially a bio-
logical analog to climate velocity. They predict
where future suitable climatic conditions for a
species may be found, given correlative relation-
ships of current climate to known current loca-
tions (e.g., Thorne et al. 2013). Dynamic global
vegetation models are similar to SDMs but simu-
late spatial shifts in vegetation and may incorpo-
rate interactions between vegetation types and
the environment. They can be run at various spa-
tial scales including global (Gonzalez et al. 2010)
or regional (Halofsky et al. 2013).
There are significant uncertainties, however, in

biological parameters used to forecast biogeo-
graphic shifts under climate change (Dormann
2007). These include estimates of species’dispersal
ability, establishment potential, sensitivity, and
adaptive capacity to climate change, and competi-
tive interactions (Summers et al. 2012, Renton
et al. 2013), as well as their evolutionary history
and habitat specificity (Williams et al. 2009).
These areas of uncertainty may erode the predic-
tive capacity of species response models (Hulme
2005) and limit proactive landscape adaptation
actions. Additionally, the actual rate of climate
change is uncertain. Although there is general
agreement among global climate model projec-
tions for increasing temperatures, disagreement
on precipitation levels (Hawkins and Sutton 2011)
and uncertainty about future emission levels
(Johns et al. 2003) are other factors that resource
managers must consider.
This uncertainty suggests the need for additional

approaches, particularly for place-based, or in situ,
analyses that can be used to spatially stratify man-
agement and monitoring actions across the extent
of a natural resource. Here, we develop such an
analysis to provide a stratification of risk levels
within an existing domain, the current extent of
natural vegetation types in California, USA. This
study examines how different sources of uncer-
tainty in climate change (different emission scenar-
ios, different climatological outcomes of climate
models) affect the landscape of future vegetation
in California. We frame the analyses both in the
context of why mitigation efforts are important to
managers grappling with adaptation (better con-
trol or governance of emissions reduces manage-
ment uncertainty), and why adaptation efforts are
important when developing mitigation policy
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(successful greenhouse gas reduction will make
adaptation more successful and less necessary).

We model the potential climate impacts to the
natural vegetation of California, an area compris-
ing 350,719 km2. Our approach takes advantage
of increasingly detailed land-cover maps available
for large regions, increasingly higher spatial reso-
lution of projected changes in climate, and the
Basin Characterization Model (BCM; Flint et al.
2013) that balances the hydrological budget with
climate on a per-grid-cell basis across large areas.
We summarize the spatial extent of in situ climate
exposure for each vegetation type under four cli-
mate models and quantify the risk of remaining
on the current business-as-usual emissions track
of RCP8.5 in comparison with lowered emission
levels thought to retain global temperature incre-
ases to about two degrees C, represented by the
RCP4.5. We compare the extent and impact pat-
terns to each vegetation type across the state and
within the state’s 10 major ecoregions. We high-
light differences in vegetation stress under these
models as they define two important aspects of
uncertainty for adaptation management of natu-
ral vegetation: (1) uncertainty over achieving
emissions reductions envisioned in recent global
climate accords, and (2) uncertainty in the direc-
tionality of changes in available water projected
by different global climate models (GCMs).

The approach is highly relevant for natural
resource managers, who are constrained to their
spatial jurisdiction and who need further detail
on the varying levels of climatic stress that may
be exerted on their lands. Such managers can
glean information from models that portray
movement, but ultimately these only partially
inform spatial decisions about where to invest
limited resources for climate adaptation. For
example, although climate conditions currently in
a park may shift 100s of kilometers (Dobrowski
and Parks 2016), the resource managers at that
location are responsible for those lands whatever
the climate may become, and are therefore keenly
interested in the climate risk, or exposure, that
may occur on their lands. This leads to a funda-
mentally different perspective on what informa-
tion is useful for supporting management
decisions among land-based resource managers.
Climate exposure information can also serve as a
valuable input to broader scale conservation plan-
ning efforts that cross jurisdictional boundaries.

Natural resource agencies, conservation organiza-
tions, and others frequently work together to
identify landscape-scale conservation priorities,
develop conservation plans, implement restora-
tion activities; incorporating spatial patterns of
climate-induced vegetation stress can help to
ensure that climate risks are addressed. The
results from this study are currently in use by
several groups in California (Appendix S1) for
watershed- and regional-scale efforts.

MATERIALS AND METHODS

We define climate exposure as the level of
change in climate conditions expected in every
pixel that a vegetation type currently occupies.
The climate exposure analysis is calculated using
the mapped extent of each macrogroup vegeta-
tion type. Every grid cell of each macrogroup is
ranked according to how often that climate occurs
in current time, relative to the entire area occupied
by that macrogroup. The current time classifica-
tion of a type’s climate envelope is then used to
track the transition of every grid cell under future
projections. This allows a measure of the potential
vegetation stress, or climate exposure, for all grid
cells occupied by each vegetation type.

Vegetation data
A 2015 statewide 30-m resolution vegetation

map (California State Department of Forestry and
Fire Protection GIS Data 2016; hereafter called the
FRAP map) was used to determine the distribu-
tion of 30 macrogroup vegetation types (see
Appendices S1 and S2: Fig. S1 and Table S1). The
FRAP map can be portrayed by Macrogroups, the
fourth level of generalization up from the most
detailed vegetation descriptions (Associations) in
the USA’s National Vegetation Classification Stan-
dard (Federal Geographic Data Committee 2008).
Macrogroups were used because these vegetation
types also serve as terrestrial conservation targets
in the 2015 California State Wildlife Action Plan,
which serves as a vision for fish and wildlife con-
servation efforts in California (California Depart-
ment of Fish and Wildlife 2015).
We analyzed 30 vegetation macrogroups (App-

endix S1: Table S1), excluding Temperate Pacific
Intertidal Shore (MG106) due to highly limited
distribution. The vegetation map was resampled
to a 270-m grid before analysis to align the

 ❖ www.esajournals.org 3 December 2017 ❖ Volume 8(12) ❖ Article e02021

THORNE ET AL.



patterns of vegetation distribution with scale of
the climate and hydrologic data used, resulting in
vegetation data map comprising approximately
4.8 million pixels. We resampled the 30-m grid
cells using majority sampling (ESRI 2015), which
assigns the vegetation type occupying the most
area within each new grid cell as the vegetation
type for that cell.

Climate data
We selected two future climate models from

among 12 GCMs (Appendix S2), the MIROC ESM
(Watanabe et al. 2011) and CNRM CM5 (Voldoire
et al. 2013) and two emission scenarios (the
RCP4.5 and RCP8.5; IPCC 2013) to compare
change from current conditions in 1981–2010 with
the 2070–2099 time period. These four climate
futures all show warming for California and
bracket future conditions by +1.9–4.5°C and �24.8
to +22.9% annual precipitation change from cur-
rent conditions (Thorne et al. 2016). The use of a
bracketing approach makes explicit the climatic
conditions that are bounded within the study, and
should climate change go beyond these bounds,
the projections here would need to be rerun.

We used nine downscaled climate condition
variables including mean annual minimum
temperature (Tmin), mean annual maximum tem-
perature (Tmax), and total annual precipitation
(PPT; Flint and Flint 2012) at a grid resolution of
270 m, and six hydrologic variables derived from
the BCM (Appendix S2: Fig. S2; Flint et al. 2013,
Thorne et al. 2015), which balances the hydrologic
budget on a per-grid-cell basis and produces a
number of metrics of interest in ecological

modeling including those used here: potential
evapotranspiration (PET), actual evapotranspira-
tion, climatic water deficit (CWD), runoff (RUN),
recharge (RCH), and snowpack (PCK; Table 1).
These values were derived by adding or taking the
mean of monthly time-step intervals for months
comprising the water year in California (October–
September) and then averaged for 1981–2010,
downscaled from the 800 m the Prism climate sur-
face data (California Department of Fish andWild-
life 2015, PRISM Climate Group 2014); and 2010–
2039, 2040–2069, and 2070–2099, derived from the
two GCMs and emission scenarios.

Climate exposure analysis
An overarching vegetation climate exposure

model was implemented in R (version 3.1.2),
using the vegetation, climate, and hydrology ras-
ter files as the primary input data. The climate
condition files were randomly sampled at
100,000 points across California to fit a statistical
model characterizing the relationship between
climatic variables both in the current time and
for the modeled future data.
At each of the 100,000 points, the nine climate

condition variables (Table 1) for the current time
period and in three future time periods were used
to characterize the range and variation of condi-
tions in the study region. We conducted this exer-
cise for each of the four GCM/emission scenarios
tested, separately. The variables were modeled
using a principal components analysis to identify
the dominant components of variation. The top-
two principal components axes, representing a
mean of 79.3% of the variability across the four

Table 1. Nine climate and hydrology variables used to model bioclimatic envelopes for California vegetation
types.

Variable Units Description

Maximum temperature (Tmax) °C Maximummonthly air temperature averaged annually
Minimum temperature (Tmin) °C Minimummonthly air temperature averaged annually
Precipitation (PPT) mm Total monthly precipitation (rain or snow) summed annually
Potential Evapotranspiration
(PET)

mm Total amount of water that can potentially evaporate from the ground surface or be
transpired by plants summed annually

Runoff (RUN) mm Amount of water that becomes stream flow, summed annually
Recharge (RCH) mm Amount of water that penetrates below the root zone, summed annually
Climatic water deficit (CWD) mm Annual evaporative demand that exceeds available water, summed annually
Actual evapotranspiration
(AET)

mm Amount of water that evaporates from the surface and is transpired by plants, limited
to available soil water, summed annually

Snowpack (PCK) mm Amount of snow that accumulated per month summed annually for April 1st
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climate projections, were extracted as a two-
dimensional space (Appendix S1: Table S2). This
was done to simplify the representation of the
hydroclimate space, while maintaining the most
important information on the variables to be asso-
ciated with the observed vegetation distributions.
Dominant factor loadings for the first principal
component relate to heat and drought attributes
and explain a mean of 64.8% of the variation, rep-
resented by CWD, PET, and mean annual maxi-
mum temperature (Tmax) for MIROC ESM and by
CWD, PET, and annual precipitation (PPT) for
CNRM CM5. The second principal component,
explaining a mean of 14.3% of the variation, is
dominated by cool and moisture attributes with
mean annual minimum temperature (Tmin), PPT,

RCH for MIROC ESM, and by Tmin, PPT, and
RUN for CNRM CM5 having the dominant factor
loadings (Appendix S1: Table S3).

Vegetation group climate exposures
Macrogroup climatic envelopes were identi-

fied using a two-dimensional kernel density esti-
mator on the first two principal components of
current climate conditions on all observations for
each macrogroup (Inset Fig. 1A). The result is a
smoothed continuous point density surface,
showing the prevalence of each vegetation type
across the range of two-dimensional climate con-
ditions. This surface was partitioned by fitting
contour lines so that they enclose a proportion of
the original points from the current time period.

Fig. 1. An example of the classification of the current extent of a vegetation type by commonness of its current
climate conditions. (A) The 2015 mapped extent of California Foothill and Valley Forests and Woodlands
(MG009), classed into varying levels of current climate suitability. Locations in the <80% categories (three shades
of blue) are those where it most commonly occurs and therefore is thought to be the least stressed. Vegetation at
locations in the 95–99% (orange) and higher (red) classes is area that is already on the climatic margins of where
the type occurs. The inset (B) represents the distribution of the vegetation when the current climate conditions
are reduced to two dimensions using a principal components analysis. Colors in the inset and the map refer to
the same categories of exposure to climate conditions. (C) The climate exposure of the same vegetation type by
end-of-century under the four futures.
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Contours were calculated at 5% increments, with
the innermost 5% contour line enclosing the 5%
of a selected vegetation type’s pixels that are at
the core of the climate space for that type, as
determined by its density in the climate space.
Cells farther away from the dense central core
are considered to be more marginal in that vege-
tation type’s distribution. The outer contours are
fit to enclose the 95–99% of climatically marginal
points, with the last 1% of cells (beyond the 99%
contour) being the most marginal. For several
vegetation types, there are a few extreme points
that are far outside the general distribution for
the type. These outlying points may be due to
data processing errors, misclassification of vege-
tation, microclimatic conditions not captured by
the climate data, or chance events.

In the initial 1981–2010 time period (current
time), pixels by definition follow a uniform distri-
bution across the frequency kernel classes. Climate
conditions that a vegetation type currently occu-
pies 80% of the time are considered suitable and
not stressful for that type, while the areas contain-
ing 80–95% climate conditions are termed neutral,
with no assumption about an associated degree of
stress. We define currently marginal climate condi-
tions as those occurring in only five percent of the
areas occupied by each vegetation type.

Once each vegetation type’s current climate
envelope is defined (e.g., Fig. 1A), we assess the
relative impact of future climate projections by
tracking the climate change in each type’s pixels
(e.g., Fig. 1B). Future climate exposure is calcu-
lated using the same principal components val-
ues in each pixel for each vegetation type in three
future time periods (2010–2039, 2040–2069, and
2070–2099). Mean climatic conditions at each
location for each time were calculated as the
average of the constituent individual years.
Future conditions for each pixel were then
mapped with respect to where they fell on the
current climate frequency contours of their vege-
tation type. We defined vegetation type pixels
whose future climates fall outside their current
95% contour as climatically exposed, and outside
the current 99% contour for their vegetation type
are considered highly exposed to climate change.
In addition, if a future cell’s climate condition is
outside the current climate 99% contour of all
vegetation types in California, it was considered
to be non-analog; that is, its future climate

conditions are not ranked in the climates cur-
rently sampled (1981–2010). We consider these
points to be highly exposed. We consider points
that fall within 80% of the current climate condi-
tions under future projections to have low or no
stress, because the vegetation type currently
experiences these conditions in many locations.
We summarize the impacts of climate change

on California’s natural vegetation for 10 ecoregions
in the state and in terms of which vegetation types
appear most climatically exposed, presenting the
results for the end-of-century time period.

RESULTS

Of the 350,719 km2 of California’s natural vege-
tation in current time, 17,536 km2 (5%) is by
definition climatically marginal, derived by iden-
tifying the locations of the 5% least frequently
occupied climate conditions for each vegetation
macrogroup. Under the RCP8.5 business-as-usual
rate of anthropogenic emissions, an additional
140,945 km2 (40% of California’s natural lands)
becomes climatically marginal under the MIROC
ESMmodel by 2100. The number is similar for the
wetter GCM tested, CNRM CM5 RCP8.5, which
produces an additional 178,957 km2 of climati-
cally marginal natural vegetation (51% of CA’s
natural lands) by end-of-century. If global emis-
sions could be reduced to the RCP4.5 level, the
corresponding additional exposure is 54,563 km2

under MIROC ESM (16% of CA natural vegeta-
tion) and 79,231 km2 under the CNRM models
(23%; Table 2; Fig. 2). The climatically non-analog
component of these results by end-of-century is
<1% of all natural vegetation under both RCP4.5
scenarios, but 7.4% under the MIROC ESM and
11.6% under the CNRM CM5 RCP8.5 scenarios.
The difference between RCP4.5 and RCP8.5 sce-
narios ranges from 86,382 to 99,726 km2 of vege-
tation projected as stressed by the end-of-century;
an area approximately the size of Portugal.
The vegetation of six of California’s ten ecore-

gions (Hickman 1993) is over 50% climatically
marginal by end-of-century under the wetter
RCP8.5 GCM, and four of those ecoregions also
reach this level of impact under the drier RCP8.5
GCM (Appendix S1: Table S4), further described
here: Central Western California’s vegetation has
the least impacts, with 16% and 19% climatically
exposed by end-of-century under the CNRM
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CM5 and MIROC ESM, respectively; and the
Sierra Nevada, particularly important for ecosys-
tem services, is 31% and 25% climatically exposed
under RCP4.5, but 55% and 62% under the
RCP8.5 scenarios for CNRM and MIROC, respec-
tively. The southwestern coast ecoregion contain-
ing Los Angeles and San Diego will experience
63–69% climatically exposed vegetation under
CNRM and MIROC ESM RCP8.5 by end-of-
century. Climatically non-analog conditions
emerge along the lower elevations of the western
Sierra Nevada under the wetter GCM; and the
Sonoran Desert has the most end-of-century extent
of non-analog climate conditions (65% and 72% of
the ecoregion under RCP8.5 MIROC ESM and
CNRM CM5, respectively) with hotter conditions
that are typically found across the border in Mex-
ico developing in the southern part of California.
It also contains the highest proportion of climati-
cally exposed vegetation among the ecoregions.

Vegetation in the state’s northern three eco-
regions (Modoc Plateau, Cascade Ranges, and
northwestern) experiences relatively fewer imp-
acts than the ones in the south. The wetter future
also produces more climatically marginal condi-
tions than the drier one, and the two model runs
using the RCP8.5 scenario cause considerably
more impacts than those using the RCP4.5 sce-
nario (Appendix S1: Table S5).

Of the 30 vegetation macrogroups, 23 cover
more than 1000 km2, 16 and 12 of whose extents

are over 50% climatically exposed by the end-
of-century under CNRM CM5 and MIROC ESM
RCP8.5 scenarios, respectively, while only five
and two have that level of impact under the
RCP4.5 scenario (Appendix S1: Table S5).
Under both RCP8.5 scenarios, 43% of Califor-

nia’s aggregate forest and woodland types are cli-
matically marginal by the end-of-century, whereas
under the RCP4.5 scenarios these types are
16.5–22.7% climatically marginal (Appendix S1:
Table S5). Warm Southwest Riparian Forest is the
most impacted among the California vegetation
types that currently occupy >1000 km2. Inter-
mountain Basins Pinyon-Juniper Woodland, Van-
couverian Rainforest, Rocky Mountain Subalpine,
and High Montane Conifer Forest, and California
Forest andWoodland are all more that 50% climat-
ically exposed under CNRM RCP8.5. The drier
MIROC RCP8.5 finds the Rocky Mountain
Subalpine and High Montane Conifer Forest, Van-
couverian Rainforest, and California Forest and
Woodland the most exposed after the Warm
Southwest Riparian Forests.
For shrub-dominated vegetation types over

1000 km2 in extent, Great Basin Upland Scrub
and Great Basin Dwarf Sagebrush Scrub are both
over 90% exposed under the RCP8.5 scenarios,
and all the more xeric shrub types are over 70%
exposed under CNRM RCP8.5. Coastal Sage
Scrub is 59–62% exposed under the RCP8.5
scenarios, while the extensive Chaparral Type is

Table 2. The area under marginal climate using a 5% threshold and the area retained as suitable under the 80%
values for the four climate futures.

Current time (1981–2010)

Total natural lands (350,719 km2) Area (km2) Value (%) Area (km2) Threshold (%)

280,575 80 17,536 5

Not stressed (<80%) Stressed (>95%)

CNRM 4.5 2010–2039 50,106 14 43,082 12
2040–2069 68,691 20 57,688 16
2070–2099 112,091 32 96,767 28

CNRM 8.5 2010–2039 59,375 17 47,347 14
2040–2069 92,878 26 82,982 24
2070–2099 188,021 54 196,493 56

MIROC 4.5 2010–2039 14,400 4 26,830 8
2040–2069 43,521 12 47,703 14
2070–2099 77,028 22 72,099 21

MIROC 8.5 2010–2039 10,219 3 24,902 7
2040–2069 73,148 21 67,840 19
2070–2099 157,931 45 158,481 45
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Fig. 2. Mapped climate exposure under four climate projections. This image shows the climate exposure of 30
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between 38% and 42% exposed under the RCP8.5
scenario. California’s grasslands are 26–29% more
exposed under the RCP8.5 than under RCP4.5.

DISCUSSION

We found that reducing global greenhouse gas
emissions has the potential to greatly reduce the
negative effects of climate change on California’s
natural vegetation, as well as to lower uncertainty
regarding adaptation management. These results
have application therefore to both policy and
resource management. We found that climate risk
to California’s current vegetation is 2–2.2 times
higher if emissions remain on the RCP8.5 emis-
sions track than if society is able to reduce emis-
sions to the RCP4.5 track that would keep
warming to approximately 2°C globally (IPCC
2013, Karmalkar and Bradley 2017). Further,
model results across GCMs are more variable
under the current RCP8.5 emissions than under a
reduced emission trajectory. These observations
have important ramifications with respect to both
California’s climate legislation (CA AB32 2013,
CA SB375 2016) and global agreements (e.g., The
Paris Agreement ratified in 2015 at the United
Nations Framework Convention on Climate
Change, United Nations 2015). Achieving Paris
Agreement goals would likely result in future cli-
mate that is much closer to the RCP4.5 projections
than the RCP8.5 projections, which would sub-
stantially reduce climate risk to California vegeta-
tion types and decrease management uncertainty.

By contrast, the difference for California’s
vegetation climate exposure is less strongly driven
by the GCMs that portray future climate than by
the emission levels. There is a difference of
38,012 km2 (~20%) in the extent of highly climati-
cally exposed natural vegetation at the end of the
21st century between the wetter and drier RCP8.5
GCMs under the RCP8.5 emissions scenario,
but the area maintained out of the climatically

marginal category with emissions tracking the
RCP4.5 scenario rather than the RCP8.5 is 50.8%
for the CNRM CM5 and 54.5% for the MIROC
ESM.
Some ecoregions and vegetation types are

inherently more at risk than others. We assumed
that if more than 50% of an ecoregion becomes
climatically stressed, it enters a higher level of
risk overall. By this measure, six of the 10 ecore-
gions are at high risk by end-of-century under
CNRM CM5 RCP8.5, and four of those are also
selected by the MIROC ESM RCP8.5 model
(Appendix S1: Table S4). Selection by both the
wetter and drier models leads to several concerns
for these four ecoregions. First, in southwestern
CA, urban expansion is a major factor for loss of
natural vegetation (Thorne et al. 2017). Increased
climate stress in this region may lead to intensi-
fied interactions between dynamics such as fire
in remaining natural vegetation, and increased
population pressure.
Second, in the Sierra Nevada, high levels of

stress indicated for the lower and mid-elevations
could have major consequences with regards to
vegetation conversion and associated potential
impacts to ecosystem services such as water
delivery (Thorne et al. 2015). In addition, intensi-
fied climate stress will increase the risk of wild-
fire and drive it to higher elevations than
historically (Schwartz et al. 2015, Liang et al.
2017). Third, high levels of climate exposure to
natural vegetation in California’s Great Valley
may also impact agricultural production (Thorne
et al. 2017).
However, a vegetation type we identify as

climatically exposed by end-of-century may not
be, if that vegetation extends beyond our study
area border. This may be applicable for the Sono-
ran Desert, the fourth ecoregion selected by both
RCP8.5 models as high risk, and containing sig-
nificant future extents of non-analog conditions.
The Sonoran Desert extends south into Mexico,

California macrogroups under the four climate projections for current time (A) and three time future periods: (B)
2011–2039, (C) 2040–2069, and (D) 2070–2099. Areas considered to be highly climatically exposed are in the
95–99%, 99–100%, and non-Analog categories. Areas with values <80% are considered to be in climatically suit-
able conditions for the vegetation that currently occupies them. “Warm and Wet” = CNRM CM5, “Hot and
Dry” = MIROC ESM, Lower Emissions = RCP4.5, and Higher Emissions = RCP8.5. Gray areas are urban and
agricultural, which were not evaluated.

(Fig. 2. Continued)
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and future climate conditions we modeled would
likely be considered less extreme if the Sonoran
Desert’s full extent were sampled. This may mean
that this vegetation has ability to withstand
greater temperatures, because it is already found
in hotter places.

Methods for assessing plant species or vegeta-
tion type climate vulnerability include purely spa-
tial approaches (Choe et al. 2017), approaches
that include only plant functional types or the
biological attributes of sensitivity and adaptive
capacity (Foden and Young 2016), and
approaches that include indirect effects of land-
scape condition such as landscape fragmentation
as a part of the scoring (Comer et al. 2012). In
many cases, predictions of how individual species
will respond to climate change rely in part on
expert opinion and published literature. If this
approach were applied here, it would need to link
dominant species of each vegetation type to the
vegetation types used. Given differential exposure
to climate conditions, attributes of the biology of
systems and their disturbance regimes will likely
strongly impact the ability of resource manage-
ment to direct outcomes. The sensitivity and
adaptive capacity of component dominant plant
species could make some vegetation types more
or less vulnerable to modeled climate change.
Because knowledge about each vegetation type
and associated species’ physiological responses to
climate varies, an overall rollup to a vulnerability
class includes assumptions that introduce addi-
tional uncertainty as well as a generalization of all
component metrics for cross-comparative pur-
poses. For these reasons, we restrict this publica-
tion to climate exposure scores for each
vegetation type. We previously found that the
dominant species’ sensitivity and adaptive capac-
ity in the vegetation types analyzed were at least
an order of magnitude less important with regard
to their climate vulnerability than the emissions
scenarios (Thorne et al. 2016).

While climate exposure projections can iden-
tify areas of a vegetation type’s extent that
become unsuitable, they can also identify the
areas that retain climatic suitability, or climate
change refugia (Figs. 1, 2). The integration of
remote sensing-based data for landscape condi-
tion has found application in other fields, such as
tracking the relative success of forest manage-
ment policies to detect leakage of carbon via

deforestation (le Polain de Waroux et al. 2016)
and compliance (Heilmayr and Lambin 2016).
This study illustrates the utility of integrating
land-cover maps derived from remote sensing
with climate projections specifically to measure
in situ risk, which has the advantage of avoiding
many of the assumptions inherent in SDMs and
DGVMs (Wiens et al. 2009).
In situ climate exposure projections are best

used in concert with other knowledge of the
landscape risks and of potential species interac-
tions. Our scores are conservative estimates of
climate risk due to a variety of compounding fac-
tors that affect vegetation, including extreme
events such as multi-year droughts or short-
duration heavy precipitation events, and sec-
ondary impacts such as large wildfires, insect
outbreaks, and invasive species incursions. For
example, phenomena associated with the recent
five-year drought (2012–2016), which could be
much more common under future climates
(Cook et al. 2015), include an increase in tree
mortality. Much of this tree mortality is caused
by beetle outbreaks and pathogens (van Mant-
gem et al. 2009), promoted due to physiological
stress in the trees indicated by increases in CWD
(Asner et al. 2016, Young et al. 2017). The recent
tree dieback of 100 million trees in California
includes areas with high levels of tree mortality
in the southern Sierra Nevada (Potter 2016,
USDA Office of Communications 2016) that we
predict will become stressed in the future under
all of the future emissions and GCMs. This indi-
cates that climate impacts, including the sec-
ondary effects of pathogens and disturbance
regimes, may be advancing faster than our cli-
mate exposure projections, and increases our
confidence in the predicted spatial patterns of
vegetation stress. Further, the empirical observa-
tions suggest that forest ecosystem conversion is
less likely to proceed through gradual stand
replacement as a consequence of reduced recruit-
ment success by dominant species (Chapin et al.
2004), and more through vegetation conversion
events driven by disturbance may become more
common in the future (e.g., Batllori et al. 2017).
Recognizing limitations of climate exposure met-

rics can help guide their use in resource planning.
First, climatically marginal conditions are identi-
fied at both the wet and the dry ends of a vegeta-
tion type’s distribution. This was particularly
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evident for the widely distributed and ecologically
important California Foothill and Valley Forests
and Woodlands, which includes both broadleaf
and conifer species (Fig. 1B). Under the wetter
CNRM RCP8.5 future, some parts of its distribu-
tion in the central and northern Sierra Nevada
become non-analog. These are areas that become
warmer, but also wetter, and the degree of stress in
this case is difficult to quantify. While these condi-
tions might be cause for optimism that impacts to
vegetation will not be as pronounced, we previ-
ously found that plant water stress, as measured
by one of the predictors used here (CWD; Stephen-
son 1998), increases under these conditions, and
evaporative demand due to warming tempera-
tures outstrips the potential increase in soil mois-
ture availability (Thorne et al. 2015). In this case,
the additional uncertainty could be used to justify
long-term monitoring or some experimentation, to
determine the trajectory these woodlands may
actually be on.

Second, while in situ measures can provide
relative levels of expected stress, the actual
physiological point at which different species
comprising the vegetation types become highly
stressed is still unknown. Our use of the least
frequently occupied five percent threshold to
describe climatically marginal conditions may
not be the appropriate level. On the lower end,
we left the 80–95% undefined as either stressful
or not. We also quantified (Appendix S1: Tables
S4 and S5) the 1% least frequently occupied, as
well as non-analog conditions as other potential
markers of climatic stress. Because the climate
exposure analysis values are continuous, if other
levels of exposure are identified as critical
tipping points, those can be incorporated. Our
climate exposure analysis also provides land-
scape explicit hypotheses about what areas are
expected to be stressed or not. As time and cli-
mate change progress, tracking what actually
happens to existing vegetation will provide the
data to confirm or potentially adjust assumptions
about critical climate exposure levels.

Finally, this approach does not predict where
plant species that are the major components of
each vegetation type may move to or whether
vegetation types will disassemble. Models depict-
ing movement could be used in conjunction with
our portrayals of landscape condition. We might
expect vegetation disassembly to occur in areas

projected with the greatest stress, while areas that
a vegetation type is expected to remain within
current suitable conditions could be areas that the
component species do not migrate from. Such
combinations of outcomes, if modeled from the
same starting and for the same future conditions,
could prove additionally informative, albeit with
the limitations of both types of approaches kept in
mind (see Introduction for limits on SDMs).
However, climate exposure analysis can inform

climate adaptation management strategies because
it can differentiate relative stress to existing vegeta-
tion, which has a high level of relevance for man-
agers. By identifying regions where vegetation is
projected to be climatically exposed early, and
areas projected to be less climatically exposed
throughout the 21st century, spatial stratification
of where we expect existing vegetation to persist
verses areas at high risk can be identified. Specifi-
cally, areas that are projected to be climate refugia
may be locations where strategies to build resili-
ence may be best achieved (Keppel et al. 2012,
Morelli et al. 2016). Managing to increase the resi-
lience of current vegetation types allows more
time for species and communities to respond to
climate through adaptation and dispersal. In con-
trast, locations projected to become highly exposed
may be good candidates for ecosystem realign-
ment to future climate states (Millar and Stephen-
son 2015).

CONCLUSIONS

Natural resource managers must choose cli-
mate adaptation strategies in the face of large
uncertainty and policy makers can help. Some
fraction of this uncertainty arises from variation
among climate models, imperfect understanding
of vegetation responses to climate, and complex
direct (physiological) and indirect vegetation
responses that interact through physical distur-
bance (i.e., fire) as well as through biotic path-
ways (i.e., pests and pathogens). Uncertainty for
managers is reduced if global agreements on
carbon emission reductions could be achieved
because reducing emissions reduces climatic
forcing. Climatic forcing introduces the other
uncertainties associated with ecological responses.
Managing vegetation in the face of this uncer-
tainty begins therefore with assessing the likeli-
hood of achieving policy directives to reduce
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emissions. The failure to achieve policy objectives
(i.e., follow the RCP4.5 emissions pathway) in this
study is that 24–28% more of California’s natural
lands are projected to become climatically mar-
ginal by remaining on the current emission
trajectory. Climatically marginal environments
can suffer massive mortality when subjected to
drought stress (van Mantgem et al. 2009, Park
Williams et al. 2013), as witnessed by enormous
drought-related tree mortality during California’s
most recent drought. We show that emission
reductions are vitally important for resource man-
agers because they are likely to matter substan-
tially in making adaptation strategies, particularly
when choosing to actively realign vegetation
types, or use natural disturbance events to change
future management objectives (e.g., re-classifying
site types in burned forests).
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